Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1377373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646441

RESUMO

Introduction: The progression of solid cancers is manifested at the systemic level as molecular changes in the metabolome of body fluids, an emerging source of cancer biomarkers. Methods: We analyzed quantitatively the serum metabolite profile using high-resolution mass spectrometry. Metabolic profiles were compared between breast cancer patients (n=112) and two groups of healthy women (from Poland and Norway; n=95 and n=112, respectively) with similar age distributions. Results: Despite differences between both cohorts of controls, a set of 43 metabolites and lipids uniformly discriminated against breast cancer patients and healthy women. Moreover, smaller groups of female patients with other types of solid cancers (colorectal, head and neck, and lung cancers) were analyzed, which revealed a set of 42 metabolites and lipids that uniformly differentiated all three cancer types from both cohorts of healthy women. A common part of both sets, which could be called a multi-cancer signature, contained 23 compounds, which included reduced levels of a few amino acids (alanine, aspartate, glutamine, histidine, phenylalanine, and leucine/isoleucine), lysophosphatidylcholines (exemplified by LPC(18:0)), and diglycerides. Interestingly, a reduced concentration of the most abundant cholesteryl ester (CE(18:2)) typical for other cancers was the least significant in the serum of breast cancer patients. Components present in a multi-cancer signature enabled the establishment of a well-performing breast cancer classifier, which predicted cancer with a very high precision in independent groups of women (AUC>0.95). Discussion: In conclusion, metabolites critical for discriminating breast cancer patients from controls included components of hypothetical multi-cancer signature, which indicated wider potential applicability of a general serum metabolome cancer biomarker.

2.
Cancers (Basel) ; 15(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894333

RESUMO

HSF1 is a well-known heat shock protein expression regulator in response to stress. It also regulates processes important for growth, development or tumorigenesis. We studied the HSF1 influence on the phenotype of non-tumorigenic human mammary epithelial (MCF10A and MCF12A) and several triple-negative breast cancer cell lines. MCF10A and MCF12A differ in terms of HSF1 levels, morphology, growth in Matrigel, expression of epithelial (CDH1) and mesenchymal (VIM) markers (MCF10A are epithelial cells; MCF12A resemble mesenchymal cells). HSF1 down-regulation led to a reduced proliferation rate and spheroid formation in Matrigel by MCF10A cells. However, it did not affect MCF12A proliferation but led to CDH1 up-regulation and the formation of better organized spheroids. HSF1 overexpression in MCF10A resulted in reduced CDH1 and increased VIM expression and the acquisition of elongated fibroblast-like morphology. The above-mentioned results suggest that elevated levels of HSF1 may direct mammary epithelial cells toward a mesenchymal phenotype, while a lowering of HSF1 could reverse the mesenchymal phenotype to an epithelial one. Therefore, HSF1 may be involved in the remodeling of mammary gland architecture over the female lifetime. Moreover, HSF1 levels positively correlated with the invasive phenotype of triple-negative breast cancer cells, and their growth was inhibited by the HSF1 inhibitor DTHIB.

3.
Metabolites ; 13(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755280

RESUMO

Response to radiotherapy (RT) includes tissue toxicity, which may involve inflammatory reactions. We aimed to compare changes in metabolic patterns induced at the systemic level by radiation and inflammation itself. Patients treated with RT due to head and neck cancer and patients with inflammation-related diseases located in the corresponding anatomical regions were selected. PubMed and Web of Science databases were searched from 1 January 2000 to 10 August 2023. Twenty-five relevant studies where serum/plasma metabolic profiles were analyzed using different metabolomics approaches were identified. The studies showed different metabolic patterns of acute and chronic inflammatory diseases, yet changes in metabolites linked to the urea cycle and metabolism of arginine and proline were common features of both conditions. Although the reviewed reports showed only a few specific metabolites common for early RT response and inflammatory diseases, partly due to differences in metabolomics approaches, several common metabolic pathways linked to metabolites affected by radiation and inflammation were revealed. They included pathways involved in energy metabolism (e.g., metabolism of ketone bodies, mitochondrial electron transport chain, Warburg effect, citric acid cycle, urea cycle) and metabolism of certain amino acids (Arg, Pro, Gly, Ser, Met, Ala, Glu) and lipids (glycerolipids, branched-chain fatty acids). However, metabolites common for RT and inflammation-related diseases could show opposite patterns of changes. This could be exemplified by the lysophosphatidylcholine to phosphatidylcholine ratio (LPC/PC) that increased during chronic inflammation and decreased during the early phase of response to RT. One should be aware of dynamic metabolic changes during different phases of response to radiation, which involve increased levels of LPC in later phases. Hence, metabolomics studies that would address molecular features of both types of biological responses using comparable analytical and clinical approaches are needed to unravel the complexities of these phenomena, ultimately contributing to a deeper understanding of their impact on biological systems.

4.
Front Oncol ; 13: 1116806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007110

RESUMO

Background: The serum metabolome is a potential source of molecular biomarkers associated with the risk of breast cancer. Here we aimed to analyze metabolites present in pre-diagnostic serum samples collected from healthy women participating in the Norwegian Trøndelag Health Study (HUNT2 study) for whom long-term information about developing breast cancer was available. Methods: Women participating in the HUNT2 study who developed breast cancer within a 15-year follow-up period (BC cases) and age-matched women who stayed breast cancer-free were selected (n=453 case-control pairs). Using a high-resolution mass spectrometry approach 284 compounds were quantitatively analyzed, including 30 amino acids and biogenic amines, hexoses, and 253 lipids (acylcarnitines, glycerides, phosphatidylcholines, sphingolipids, and cholesteryl esters). Results: Age was a major confounding factor responsible for a large heterogeneity in the dataset, hence age-defined subgroups were analyzed separately. The largest number of metabolites whose serum levels differentiated BC cases and controls (82 compounds) were observed in the subgroup of younger women (<45 years old). Noteworthy, increased levels of glycerides, phosphatidylcholines, and sphingolipids were associated with reduced risk of cancer in younger and middle-aged women (≤64 years old). On the other hand, increased levels of serum lipids were associated with an enhanced risk of breast cancer in older women (>64 years old). Moreover, several metabolites could be detected whose serum levels were different between BC cases diagnosed earlier (<5 years) and later (>10 years) after sample collecting, yet these compounds were also correlated with the age of participants. Current results were coherent with the results of the NMR-based metabolomics study performed in the cohort of HUNT2 participants, where increased serum levels of VLDL subfractions were associated with reduced risk of breast cancer in premenopausal women. Conclusions: Changes in metabolite levels detected in pre-diagnostic serum samples, which reflected an impaired lipid and amino acid metabolism, were associated with long-term risk of breast cancer in an age-dependent manner.

5.
Cells ; 11(16)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010586

RESUMO

Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including ATF3 and certain FOS and JUN family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels. These genes were direct HSF1 targets, suggesting a dual (activatory/suppressory) role for HSF1. Moreover, we found that heat shock-induced inflammatory response could be stronger in HSF1-deficient cells. Analyses of The Cancer Genome Atlas data indicated that higher ATF3, FOS, and FOSB expression levels correlated with low HSF1 levels in estrogen receptor-positive breast cancer, reflecting higher heat shock-induced expression of these genes in HSF1-deficient MCF7 cells observed in vitro. However, differences between the analyzed cancer types were noted in the regulation of HSF1-dependent genes, indicating the presence of cell-type-specific mechanisms. Nevertheless, our data indicate the existence of the heat shock-induced network of transcription factors (associated with the activation of TNFα signaling) which includes HSF1. Independent of its chaperone-mediated cytoprotective function, HSF1 may be involved in the regulation of this network but prevents its overactivation in some cells during stress.


Assuntos
Proteínas de Ligação a DNA , Genes fos , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Humanos , Inflamação/genética , Fatores de Transcrição/metabolismo
6.
Cells ; 11(12)2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741093

RESUMO

Exosomes that are released by T cells are key messengers involved in immune regulation. However, the molecular profiling of these vesicles, which is necessary for understanding their functions, requires their isolation from a very heterogeneous mixture of extracellular vesicles that are present in the human plasma. It has been shown that exosomes that are produced by T cells could be isolated from plasma by immune capture using antibodies that target the CD3 antigen, which is a key component of the TCR complex that is present in all T lymphocytes. Here, we demonstrate that CD3(+) exosomes that are isolated from plasma can be used for high-throughput molecular profiling using proteomics and metabolomics tools. This profiling allowed for the identification of proteins and metabolites that differentiated the CD3(+) from the CD3(-) exosome fractions that were present in the plasma of healthy donors. Importantly, the proteins and metabolites that accumulated in the CD3(+) vesicles reflected the known molecular features of T lymphocytes. Hence, CD3(+) exosomes that are isolated from human plasma by immune capture could serve as a "T cell biopsy".


Assuntos
Exossomos , Complexo CD3/metabolismo , Exossomos/metabolismo , Humanos , Metabolômica , Proteínas/metabolismo , Proteômica , Linfócitos T
7.
Elife ; 102021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783649

RESUMO

Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers an elevated HSF1 level is associated with metastatic disease.


About 70% of breast cancers rely on supplies of a hormone called estrogen ­ which is the main hormone responsible for female physical characteristics ­ to grow. Breast cancer cells that are sensitive to estrogen possess proteins known as estrogen receptors and are classified as estrogen-receptor positive. When estrogen interacts with its receptor in a cancer cell, it stimulates the cell to grow and migrate to other parts of the body. Therefore, therapies that decrease the amount of estrogen the body produces, or inhibit the receptor itself, are widely used to treat patients with estrogen receptor-positive breast cancers. When estrogen interacts with an estrogen receptor known as ERα it can also activate a protein called HSF1, which helps cells to survive under stress. In turn, HSF1 regulates several other proteins that are necessary for ERα and other estrogen receptors to work properly. Previous studies have suggested that high levels of HSF1 may worsen the outcomes for patients with estrogen receptor-positive breast cancers, but it remains unclear how HSF1 acts in breast cancer cells. Vydra, Janus, Kus et al. used genetics and bioinformatics approaches to study HSF1 in human breast cancer cells. The experiments revealed that breast cancer cells with lower levels of HSF1 also had lower levels of ERα and responded less well to estrogen than cells with higher levels of HSF1. Further experiments suggested that in the absence of estrogen, HSF1 helps to keep ERα inactive. However, when estrogen is present, HSF1 cooperates with ERα and enhances its activity to help cells grow and migrate. Vydra, Janus, Kus et al. also found that cells with higher levels of HSF1 were less sensitive to two drug therapies that are commonly used to treat estrogen receptor-positive breast cancers. These findings reveal that the effect HSF1 has on ERα activity depends on the presence of estrogen. Therefore, cancer therapies that decrease the amount of estrogen a patient produces may have a different effect on estrogen receptor-positive tumors with high HSF1 levels than tumors with low HSF1 levels.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Transdução de Sinais , Adulto , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Feminino , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Pessoa de Meia-Idade , Adulto Jovem
8.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119086, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175335

RESUMO

The mouse 3110001I22Rik gene located in the first intron of Bfar is considered as a Bfar variant coding for the BFARv3 protein. However, it differs from other BFAR isoforms and resembles periphilin 1 (PPHLN1) due to its two (Lge1 and serine-rich) conserved domains. We identified the BFARv3/EGFP-interacting proteins by co-immunoprecipitation coupled to mass spectrometry, which revealed 40S ribosomal proteins (RPS3, RPS14, RPS19, RPS25, RPS27), histones (H1.2, H1.4, H3.3C), proteins involved in RNA processing and splicing (SFPQ, SNRPA1, HNRNPA3, NONO, KHDRBS3), calcium signaling (HPCAL1, PTK2B), as well as HSD17B4, GRB14, POSTN, and MYO10. Co-immunoprecipitation revealed that both Lge1 and Ser-rich domains of BFARv3 were necessary for binding to RNA-interacting factors NONO and SFPQ, known to be components of paraspeckles. Reciprocal co-immunoprecipitation and the proximity ligation assay confirmed that both BFARv3 and PPHLN1 could interact with NONO and SFPQ, suggesting a new function for PPHLN1 as well. BFARv3 and its Lge1 or Ser-rich-deficient mutants preferentially localize in the nucleus. We found an accumulation of BFARv3/EGFP (but not its mutated forms) in the nuclear granules, which was enhanced in response to arsenite treatment and ionizing radiation. Although Bfar v3 is expressed ubiquitously in mouse tissues, its expression is the highest in metaphase II oocytes. The BFARv3 interactome suggests its role in RNA metabolism, which is critical for the transcriptionally silent MII oocyte. Mouse BFARv3 has no ortholog in the human genome, thus it may contribute to the differences between these two species observed in oocyte maturation and early embryonic development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas de Membrana/genética , Oócitos/metabolismo , RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos
9.
Cell Death Differ ; 27(7): 2280-2292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31996779

RESUMO

Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.


Assuntos
Apoptose , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Regulação para Cima/genética , Animais , Apoptose/genética , Caspases/metabolismo , Cromatina/metabolismo , Ativação Enzimática , Resposta ao Choque Térmico/genética , Íntrons/genética , Masculino , Camundongos Knockout , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteína Supressora de Tumor p53/metabolismo
10.
Eur J Pharmacol ; 866: 172804, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31738938

RESUMO

Water-soluble polymer-drug conjugates were obtained and analyzed towards their potential use as prodrugs for two hydrophobic antipsoriatic agents, including methotrexate (MTX) and acitretin (AC). The conjugation efficacy of MTX decreased with a decreasing molar ratio of N,N-dimethylaminoethyl methacrylate (DMAEMA) repeating units in the polymethacrylic chains. Cytotoxicity of positively charged (from +5 to +10 mV) nano- and microparticles (3-1500 nm in DMEM at 37 °C) were estimated by in vitro MTT and Annexin-V apoptosis assays on Me45, NHDF, HaCaT and BEAS-2B cell lines. Further, cell cycle analysis revealed arrest in G0/G1 phase in melanoma cells, while neither apoptosis induction nor cell cycle arrest occurred in normal epidermal and epithelial cells. Tested conjugates displayed a novel cytostatic effect in Me45 cells and a pro-apoptotic effect in HaCaT cells. Epithelial BEAS-2B cells were the most sensitive to the tested conjugates and responded via induction of necrosis. Cell line models allowed for characterization of the biologically relevant potential action of pro-drugs. Additionally, a skin in vitro evaluation assay provided the first known evidence of side-effect reduction with pro-drug use. Histological examinations confirmed the lack of negative effects of conjugates on the skin and showed no irritating properties.


Assuntos
Acitretina/química , Metotrexato/química , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/toxicidade , Psoríase/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/uso terapêutico , Pele/efeitos dos fármacos
11.
Cancers (Basel) ; 11(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614463

RESUMO

Heat Shock Factor 1 (HSF1) is a key regulator of gene expression during acute environmental stress that enables the cell survival, which is also involved in different cancer-related processes. A high level of HSF1 in estrogen receptor (ER)-positive breast cancer patients correlated with a worse prognosis. Here we demonstrated that 17ß-estradiol (E2), as well as xenoestrogen bisphenol A and ERα agonist propyl pyrazole triol, led to HSF1 phosphorylation on S326 in ERα positive but not in ERα-negative mammary breast cancer cells. Furthermore, we showed that MAPK signaling (via MEK1/2) but not mTOR signaling was involved in E2/ERα-dependent activation of HSF1. E2-activated HSF1 was transcriptionally potent and several genes essential for breast cancer cells growth and/or ERα action, including HSPB8, LHX4, PRKCE, WWC1, and GREB1, were activated by E2 in a HSF1-dependent manner. Our findings suggest a hypothetical positive feedback loop between E2/ERα and HSF1 signaling, which may support the growth of estrogen-dependent tumors.

12.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906015

RESUMO

Spermatocytes are among the most heat-sensitive cells and the exposure of testes to heat shock results in their Heat Shock Factor 1 (HSF1)-mediated apoptosis. Several lines of evidence suggest that pleckstrin-homology-like domain family A, member 1 (PHLDA1) plays a role in promoting heat shock-induced cell death in spermatogenic cells, yet its precise physiological role is not well understood. Aiming to elucidate the hypothetical role of PHLDA1 in HSF1-mediated apoptosis of spermatogenic cells we characterized its expression in mouse testes during normal development and after heat shock. We stated that transcription of Phlda1 is upregulated by heat shock in many adult mouse organs including the testes. Analyzes of the Phlda1 expression during postnatal development indicate that it is expressed in pre-meiotic or somatic cells of the testis. It starts to be transcribed much earlier than spermatocytes are fully developed and its transcripts and protein products do not accumulate further in the later stages. Moreover, neither heat shock nor expression of constitutively active HSF1 results in the accumulation of PHLDA1 protein in meiotic and post-meiotic cells although both conditions induce massive apoptosis of spermatocytes. Furthermore, the overexpression of PHLDA1 in NIH3T3 cells leads to cell detachment, yet classical apoptosis is not observed. Therefore, our findings indicate that PHLDA1 cannot directly contribute to the heat-induced apoptosis of spermatocytes. Instead, PHLDA1 could hypothetically participate in death of spermatocytes indirectly via activation of changes in the somatic or pre-meiotic cells present in the testes.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fatores de Transcrição de Choque Térmico/farmacologia , Espermatócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Resposta ao Choque Térmico/fisiologia , Masculino , Camundongos , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Testículo/metabolismo , Testículo/patologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...